Create output of group comparison based on results for individual proteins

MSstatsGroupComparisonOutput(input, summarization_output, log_base = 2)

Arguments

input

output of MSstatsGroupComparison function

summarization_output

output of dataProcess function

log_base

base of the logarithm used in fold-change calculation

Value

list, same as the output of `groupComparison`

Examples

QuantData <- dataProcess(SRMRawData, use_log_file = FALSE)
#> INFO [2021-07-05 20:05:26] ** Features with one or two measurements across runs are removed. #> INFO [2021-07-05 20:05:26] ** Fractionation handled. #> INFO [2021-07-05 20:05:26] ** Updated quantification data to make balanced design. Missing values are marked by NA #> INFO [2021-07-05 20:05:26] ** Log2 intensities under cutoff = 3.776 were considered as censored missing values. #> INFO [2021-07-05 20:05:26] ** Log2 intensities = NA were considered as censored missing values. #> INFO [2021-07-05 20:05:26] ** Use all features that the dataset originally has. #> INFO [2021-07-05 20:05:26] #> # proteins: 2 #> # peptides per protein: 2-2 #> # features per peptide: 3-3 #> INFO [2021-07-05 20:05:26] #> 1 2 3 4 5 6 7 8 9 10 #> # runs 3 3 3 3 3 3 3 3 3 3 #> # bioreplicates 3 3 3 3 3 3 3 3 3 3 #> # tech. replicates 1 1 1 1 1 1 1 1 1 1 #> INFO [2021-07-05 20:05:26] == Start the summarization per subplot... #> | | | 0% | |=================================== | 50% | |======================================================================| 100% #> INFO [2021-07-05 20:05:26] == Summarization is done.
group_comparison_input = MSstatsPrepareForGroupComparison(QuantData) levels(QuantData$ProteinLevelData$GROUP)
#> [1] "1" "10" "2" "3" "4" "5" "6" "7" "8" "9"
comparison <- matrix(c(-1,0,0,0,0,0,1,0,0,0),nrow=1) row.names(comparison) <- "T7-T1" groups = levels(QuantData$ProteinLevelData$GROUP) colnames(comparison) <- groups[order(as.numeric(groups))] samples_info = getSamplesInfo(QuantData) repeated = checkRepeatedDesign(QuantData) group_comparison = MSstatsGroupComparison(group_comparison_input, comparison, FALSE, repeated, samples_info)
#> | | | 0% | |=================================== | 50% | |======================================================================| 100%
group_comparison_final = MSstatsGroupComparisonOutput(group_comparison, QuantData) group_comparison_final[["ComparisonResult"]]
#> Protein Label log2FC SE Tvalue DF pvalue adj.pvalue #> 1 IDHC T7-T1 6.15438359 0.2917031 21.0981085 18 3.819167e-14 7.638334e-14 #> 2 PMG2 T7-T1 -0.09032809 0.1518673 -0.5947831 18 5.593918e-01 5.593918e-01 #> issue MissingPercentage ImputationPercentage #> 1 NA 0 0 #> 2 NA 0 0