Get information about number of measurements for each group

getSamplesInfo(summarization_output)

Arguments

summarization_output

output of the dataProcess function

Value

data.table

Details

This function extracts information required to compute percentages of missing and imputed values in group comparison.

Examples

QuantData <- dataProcess(DDARawData, use_log_file = FALSE)
#> INFO [2021-07-05 20:05:57] ** Features with one or two measurements across runs are removed. #> INFO [2021-07-05 20:05:57] ** Fractionation handled. #> INFO [2021-07-05 20:05:57] ** Updated quantification data to make balanced design. Missing values are marked by NA #> INFO [2021-07-05 20:05:57] ** Log2 intensities under cutoff = 13.456 were considered as censored missing values. #> INFO [2021-07-05 20:05:57] ** Log2 intensities = NA were considered as censored missing values. #> INFO [2021-07-05 20:05:57] ** Use all features that the dataset originally has. #> INFO [2021-07-05 20:05:57] #> # proteins: 6 #> # peptides per protein: 11-32 #> # features per peptide: 1-1 #> INFO [2021-07-05 20:05:57] #> C1 C2 C3 C4 C5 C6 #> # runs 3 3 3 3 3 3 #> # bioreplicates 1 1 1 1 1 1 #> # tech. replicates 3 3 3 3 3 3 #> INFO [2021-07-05 20:05:58] Some features are completely missing in at least one condition: #> D.GPLTGTYR_23_23_NA_NA, #> F.HFHWGSSDDQGSEHTVDR_402_402_NA_NA, #> G.PLTGTYR_8_8_NA_NA, #> H.SFNVEYDDSQDK_465_465_NA_NA, #> K.AVVQDPALKPL_156_156_NA_NA ... #> INFO [2021-07-05 20:05:58] == Start the summarization per subplot... #> | | | 0% | |============ | 17% | |======================= | 33% | |=================================== | 50% | |=============================================== | 67% | |========================================================== | 83% | |======================================================================| 100% #> INFO [2021-07-05 20:05:58] == Summarization is done.
samples_info <- getSamplesInfo(QuantData) samples_info
#> GROUP NumRuns #> 1: C1 3 #> 2: C2 3 #> 3: C3 3 #> 4: C4 3 #> 5: C5 3 #> 6: C6 3