Linear model-based summarization for a single protein

MSstatsSummarizeSingleLinear(single_protein, equal_variances = TRUE)

Arguments

single_protein

feature-level data for a single protein

equal_variances

if TRUE, observation are assumed to be homoskedastic

Value

list with protein-level data

Examples

raw = DDARawData method = "linear" cens = NULL impute = FALSE # currently, MSstats only supports MBimpute = FALSE for linear summarization MSstatsConvert::MSstatsLogsSettings(FALSE) input = MSstatsPrepareForDataProcess(raw, 2, NULL)
#> INFO [2021-07-05 20:05:30] ** Features with one or two measurements across runs are removed. #> INFO [2021-07-05 20:05:30] ** Fractionation handled. #> INFO [2021-07-05 20:05:30] ** Updated quantification data to make balanced design. Missing values are marked by NA
input = MSstatsNormalize(input, "EQUALIZEMEDIANS") input = MSstatsMergeFractions(input) input = MSstatsHandleMissing(input, "TMP", TRUE, "NA", 0.999)
#> INFO [2021-07-05 20:05:30] ** Log2 intensities under cutoff = 13.456 were considered as censored missing values. #> INFO [2021-07-05 20:05:30] ** Log2 intensities = NA were considered as censored missing values.
input = MSstatsSelectFeatures(input, "all")
#> INFO [2021-07-05 20:05:30] ** Use all features that the dataset originally has.
input = MSstatsPrepareForSummarization(input, method, impute, cens, FALSE) input_split = split(input, input$PROTEIN) single_protein_summary = MSstatsSummarizeSingleLinear(input_split[[1]]) head(single_protein_summary[[1]])
#> Protein RUN LogIntensities #> 1: bovine 1 21.39496 #> 2: bovine 2 20.94576 #> 3: bovine 3 20.91096 #> 4: bovine 4 21.83630 #> 5: bovine 5 21.61791 #> 6: bovine 6 21.35518